
Downloading Tweets, Take III
– MongoDB
In this tutorial I walk you through how to use Python and
MongoDB to download tweets from a list of Twitter users.

This tutorial builds on several recents posts on how to use
Python to download Twitter data. Specifically, in a previous
post I showed you how to download tweets using Python and an
SQLite database — a type of traditional relational database.
More and more people are interested in noSQL databases such as
MongoDB, so in a follow-up post I talked about the advantages
and disadvantages of using SQLite vs MongoDB to download
social media data for research purposes. Today I go into
detail about how to actually use MongoDB to download your data
and I point out the differences from the SQLite approach along
the way.

Overview
This tutorial is directed at those who are new to Python,
MongoDB, and/or downloading data from the Twitter API. We will
be using Python to download the tweets and will be inserting
the tweets into a MongoDB database. This code will allow you
to download up to the latest 3,200 tweets sent by each Twitter
user. I will not go over the script line-by-line but will
instead attempt to provide you a ‘high-level’ understanding of
what we are doing — just enough so that you can run the script
successfully yourself.

Before running this script, you will need to:

Have Anaconda Python 2.7 installed
Have your Twitter API details handy
Have MongoDB installed and running
Have created a CSV file (e.g., in Excel) containing the

http://social-metrics.org/downloading-tweets-by-a-list-of-users-take3/
http://social-metrics.org/downloading-tweets-by-a-list-of-users-take3/
http://social-metrics.org/downloading-tweets-by-a-list-of-users-take2/
http://social-metrics.org/downloading-tweets-by-a-list-of-users-take2/
http://social-metrics.org/sqlite-vs-mongodb/

Twitter handles you wish to download. Below is a sample
you can download and use for this tutorial. Name it
accounts.csv and place it in the same directory as the
Python script.

If you are completely new to Python and the Twitter API, you
should first make your way through the following tutorials,
which will help you get set up and working with Python:

Which version of Python to download
Running your first code
Four ways to run your code
Setting up access to the Twitter API

Another detailed tutorial I have created, Python Code
Tutorial, is intended to serve as an introduction to how to
access the Twitter API and then read the JSON data that is
returned. It will be helpful for understanding what we’re
doing in this script.

Also, if you are not sure you want to use MongoDB as your
database, take a look at this post, which covers the
advantages and disadvantages of using SQLite vs MongoDB to
download social media data. As noted in that post, MongoDB has
a more detailed installation process.

At the end of this post I’ll show the entire script. For now,
I’ll go over it in sections. The code is divided into seven
parts:

Part I: Importing Necessary Python
Packages
The first line in the code is the shebang — you’ll find this
in all Python code.

http://social-metrics.org/python-where-to-start/
http://social-metrics.org/starting-on-python-1/
http://social-metrics.org/starting-on-python-2/
http://social-metrics.org/api-keys/
http://social-metrics.org/python-tutorial-1/
http://social-metrics.org/python-tutorial-1/
http://social-metrics.org/sqlite-vs-mongodb/
http://en.wikipedia.org/wiki/Shebang_(Unix)

Lines 3 – 23 contain the docstring — also a Python convention.
This is a multi-line comment that describes the code. For
single-line comments, use the # symbol at the start of the
line.

In lines 26 – 31 we’ll import some Python packages needed to
run the code. Twython can be installed by opening your
Terminal and installing by entering pip install Twython. For
more details on this process see this blog post.

Part II: Import Twython and Twitter App
Key and Access Token
Lines 37-42 is where you will enter your Twitter App Key and
Access Token (lines 40-41). If you have yet to do this you can
refer to the tutorial on Setting up access to the Twitter API.

Part III: Define a Function for Getting
Twitter Data
In this block of code we are creating a Python function. The
function sets up which part of the Twitter API we wish to
access (specifically, it is the get user timeline API), the
number of tweets we want to get per page (I have chosen the
maximum of 200), and whether we want to include retweets. We
will call this function later on in the code.

Part IV: Set up MongoDB Database and
Collections (Tables)
Lines 72-111 are where you set up your MongoDB database and
‘collections’ (tables).

http://legacy.python.org/dev/peps/pep-0257/
http://social-metrics.org/python-code-prerequisites/
http://social-metrics.org/api-keys/
https://dev.twitter.com/rest/reference/get/statuses/user_timeline

This is where you’ll see the first major differences from an
SQLite implementation of this code. First, unlike SQLite, you
will need to make sure MongoDB is running by typing mongod or
sudo mongod in the terminal. So, that’s one extra step you
have to take with MongoDB. If you’re running the code on a
machine that is running 24/7 that is no issue; if not you’ll
just have to remember.

There is a big benefit to MongoDB here, however. Unlike with
the SQLite implementation, there is no need to pre-define
every column in our database tables. As you can see in the
SQLite version, we devoted 170 lines of code to defining and
naming database columns.

Below, in contrast, we are simply making a connection to
MongoDB, creating our database, then our database tables, then
indexes on those tables. Note that, if this is the first time
you’re running this code, the database and tables and indexes
will be created; if not, the code will simply access the
database and tables. Note also that MongoDB refers to database
tables as ‘collections’ and refers to columns or variables as
‘fields.’

One thing that is similar to the SQLite version is that we are
setting indexes on our database tables. This means that no two
tweets with the same index value — the tweet’s ID string
(id_str) — can be inserted into our database. This is to avoid
duplicate entries.

One last point: we are setting up two tables, one for the
tweets and one to hold the Twitter account names for which we
wish to download tweets.

Part V: Read in Twitter Accounts (and add
to MongoDB database if first run)
In Lines 117-139 we are creating a Python list of Twitter

http://social-metrics.org/downloading-tweets-by-a-list-of-users-take2/
http://social-metrics.org/downloading-tweets-by-a-list-of-users-take2/

handles for which we want to download tweets. The first part
of the code (lines 119-130) is to check if this is the first
time you’re running the code. If so, it will read the Twitter
handle data from your local CSV file and insert it into the
accounts table in your MongoDB database. In all subsequent
runs of the code the script will skip over this block and go
directly to line 137 — that creates a list called
twitter_accounts that we’ll loop over in Part VI of the code.

Part VI: Main Loop: Loop Over Each of the
Twitter Handles in the Accounts Table and
Download Tweets
In lines 144-244 we are at the last important step.

This code is much shorter here as well compared to the SQLite
version. As noted in my previous post comparing SQLite to
MongoDB, in MongoDB we do not need to define all of the
columns we wish to insert into our database. MongoDB will just
take whatever columns you throw at it and insert. In the
SQLite version, in contrast, we had to devote 290 lines of
code just specifying what specific parts of the Twitter data
we are grabbing and how they relate to our pre-defined
variable names.

After stripping out all of those details, the core of this
code is the same as in the SQLite version. At line 151 we
begin a for loop where we are looping over each Twitter ID (as
indicated by the Twitter_handle variable in our accounts
database).

Note that within this for loop we have a while loop (lines
166-238). What we are doing here is, for each Twitter ID, we
are grabbing up to 16 pages’ worth of tweets; this is the
maximum allowed for by the Twitter API. It is in this loop
(line 170) that we call our get_data_user_timeline_all_pages
function, which on the first loop will grab page 1 for the

http://social-metrics.org/sqlite-vs-mongodb/
http://social-metrics.org/sqlite-vs-mongodb/

Twitter ID, then page 2, then page 3, …. up to page 16 so long
as there are data to return.

Lines 186-205 contains code for writing the data into our
MongoDB database table. We have defined our variable d to
contain the result of calling our
get_data_user_timeline_all_pages function — this means that,
if successful, d will contain 200 tweets’ worth of data. The
for loop starting on line 187 will loop over each tweet, add
three variables to each tweet — date_inserted,
time_date_inserted, and screen_name — and then insert the
tweet into our tweets collection.

One last thing I’d like to point out here is the API limit
checks I’ve written in lines 221-238. What this code is doing
is checking how many remaining API calls you have. If it is
too low, the code will pause for 5 minutes.

Part VII: Print out Number of Tweets in
Database per Account
This final block of code will print out a summary of how many
tweets there are per account in your tweets database.

Now let’s put the whole thing together. To recap, what this
entire script does is to loop over each of the Twitter
accounts in the accounts table of your MongoDB database — and
for each one it will grab up to 3,200 tweets and insert the
tweets into the tweets table of your database.

Below is the entire script — download it and save it as
tweets.py (or something similar) in the same directory as your
accounts.csv file. Add in your Twitter API account details and
you’ll be good to go! For a refresher on the different ways
you can run the script see this earlier post.

If you’ve found this post helpful please share on your

http://social-metrics.org/starting-on-python-2/

favorite social media site.

You’re on your way to downloading your own Twitter data! Happy
coding!

